
Windows Communication
Foundation Using C#

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

 Object Innovations Course 4153

Student Guide
Revision 4.8

Windows Communication
Foundation Using C#

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

Rev. 4.8 Copyright ©2018 Object Innovations Enterprises, LLC ii
 All Rights Reserved

Windows Communication Foundation Using C#
Rev. 4.8

Student Guide

Information in this document is subject to change without notice. Companies, names and data used
in examples herein are fictitious unless otherwise noted. No part of this document may be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose,
without the express written permission of Object Innovations.

Product and company names mentioned herein are the trademarks or registered trademarks of their
respective owners.

™ is a trademark of Object Innovations.

Authors: Robert J. Oberg, Julian Templeman and Ernani Junior Cecon

Copyright ©2018 Object Innovations Enterprises, LLC All rights reserved.

Object Innovations
877-558-7246
www.objectinnovations.com

Published in the United States of America.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

Rev. 4.8 Copyright ©2018 Object Innovations Enterprises, LLC iii
 All Rights Reserved

Table of Contents (Overview)

Chapter 1 WCF Essentials

Chapter 2 Addresses and Bindings

Chapter 3 Service Contracts

Chapter 4 Instance Management

Chapter 5 Data Contracts

Chapter 6 More about Service Contracts

Chapter 7 Handling Errors

Chapter 8 WCF Security

Chapter 9 WCF Routing

Appendix A Learning Resources

Appendix B Hosting in IIS 7.5

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

Rev. 4.8 Copyright ©2018 Object Innovations Enterprises, LLC iv
 All Rights Reserved

Directory Structure

 Install the course software by running the self-
extractor Install_WcfCs_48.exe.

 The course software installs to the root directory
C:\OIC\WcfCs.

 Example programs for each chapter are in named
subdirectories of chapter directories Chap01, Chap02 and so
on.

 The Labs directory contains one subdirectory for each lab,
named after the lab number. Starter code is frequently
supplied, and answers are provided in the chapter directories.

 The Demos directory is provided for performing in-class
demonstrations led by the instructor.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

Rev. 4.8 Copyright ©2018 Object Innovations Enterprises, LLC v
 All Rights Reserved

Table of Contents (Detailed)

Chapter 1: WCF Essentials.. 1
What Is WCF?... 3
WCF Services ... 4
Service Orientation ... 6
WCF and Web Services .. 7
WCF and Web API ... 8
WCF = ABC ... 9
Address, Binding, Contract... 10
Example – Hello WCF.. 11
Hosting Services ... 12
Demo – Hello WCF .. 13
A Service Contract.. 15
Visual Studio WCF Test Host... 16
WCF Test Client ... 17
Closing the Test Host Manually ... 19
Self-Hosting .. 20
ServiceHost Class ... 21
Host Life Cycle ... 22
WCF Clients.. 23
Channels.. 24
Demo – A Client for Hello WCF.. 25
ChannelFactory ... 26
Running the Example.. 27
Base Address... 29
Base Address Example ... 30
Uri Class ... 31
Configuration Files ... 32
Simplified Host Code.. 33
Proxy Initialization ... 34
Metadata Exchange... 35
Metadata Exchange Example.. 36
Behaviors .. 37
A Service in a Browser ... 38
Proxy Demo – SvcUtil .. 39
Proxy Demo – Visual Studio Proxy.. 41
Standard Endpoints ... 43
Lab 1 ... 44
WCF Architecture... 45
ServiceHost and ChannelFactory.. 47
Service Contexts and Instances... 48
Summary ... 49

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

Rev. 4.8 Copyright ©2018 Object Innovations Enterprises, LLC vi
 All Rights Reserved

Chapter 2: Addresses and Bindings .. 55
Addresses .. 57
Transports ... 58
Bindings .. 59
Message Exchange Patterns (MEPs) .. 60
Security ... 61
Choosing a Binding .. 62
HTTP Bindings ... 63
TCP and Named Pipe Bindings .. 65
MSMQ Bindings... 66
WebSocket and UDP Bindings... 67
Importance of BasicHttpBinding .. 68
Demo – ASMX Web Service Client ... 69
Working with Endpoints ... 74
Default Endpoints and Bindings ... 75
Default Endpoints Example .. 76
Helper Methods... 77
ServiceDescription Class .. 78
Multiple Endpoints ... 79
Multiple Endpoints Configuration File... 81
Multiple Protocol Example... 82
Simple Host Code ... 83
Lab 2 ... 84
Summary ... 85

Chapter 3: Service Contracts... 93
Service Contracts at Class Level .. 95
Service Contracts at Interface Level... 96
Benefits of Interface Level Definition .. 97
A Service with Multiple Contracts ... 98
ServiceContractAttribute .. 100
ServiceContract Attribute Example .. 101
Attributes in WSDL .. 103
Viewing WSDL Files.. 104
Contract Inheritance.. 105
Operation Overloading ... 108
Enabling Operation Overloading .. 109
Operation Overloading Client... 110
Lab 3A .. 111
Lab 3B... 112
Summary ... 113

Chapter 4: Instance Management ... 123
Behaviors .. 125
WCF Behaviors... 126
Configuring Behaviors.. 127

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

Rev. 4.8 Copyright ©2018 Object Innovations Enterprises, LLC vii
 All Rights Reserved

Configuring Behaviors in Code .. 128
WCF Instancing Models ... 129
Per-Call Instancing ... 130
Per-Session Instancing.. 131
Sessions and Threading .. 132
Singleton Instancing ... 133
Which Model to Use? ... 134
PerSession Example.. 135
PerCall Example ... 138
Singleton Example .. 139
Windows Forms WCF Clients .. 140
Lab 4 ... 141
Summary ... 142

Chapter 5: Data Contracts... 147
Data Contracts... 149
Data Contract Example ... 150
Data Contract Demonstration ... 151
XSD for Data Contract.. 154
Client Demo.. 156
Arrays.. 158
Array in XML Schema.. 159
Array in Proxy .. 160
Generic Collections... 161
Generic Collection in XML Schema .. 162
Generic Collection in Proxy ... 163
Lab 5A .. 164
Enumerations in Data Contracts ... 165
Enumeration Data Contract Example ... 166
Employee Client Program... 167
Saving and Restoring .. 168
Serialization in WCF .. 169
Serialization in .NET .. 170
Serialization Example ... 171
SOAP Serialization ... 172
DataContract Serialization.. 173
JSON Serialization.. 175
Using XmlSerializer ... 176
XmlSerializer Example... 178
Restoring Data .. 180
Versioning... 182
New and Missing Members .. 183
Versioning Demonstration.. 184
New Client of Old Service.. 186
Round Trip .. 187
Required Members.. 188

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

Rev. 4.8 Copyright ©2018 Object Innovations Enterprises, LLC viii
 All Rights Reserved

OnDeserializing Event .. 189
Lab 5B... 190
Summary ... 191

Chapter 6: More about Service Contracts ... 201
Versioning Service Contracts ... 203
Versioning Example.. 204
Version 1 Service.. 205
Version 2 Service.. 206
New Operations .. 207
Version 3 Service.. 208
Version 1 Client / Version 3 Service .. 209
Version 2 Client / Version 2 Service .. 210
Version 3 Client / Version 3 Service .. 211
Message Exchange Patterns.. 212
Request-Reply... 213
Oneway ... 214
Oneway Example .. 215
Duplex... 216
Callbacks... 217
Invoking a Callback .. 218
Callback on the Client... 219
Asynchronous Proxies .. 220
Threading Considerations ... 221
Task-Based Asynchronous Pattern ... 223
Task-Based Client... 224
WebSockets... 225
Lab 6 ... 226
Summary ... 227

Chapter 7: Handling Errors .. 235
Errors in Distributed Systems ... 237
Errors in .NET and WCF .. 238
Demo of WCF Error Behavior.. 239
Service Library Code .. 241
Client Code ... 242
Client Exception Handling.. 243
Exception Handling Demo.. 244
Fault Exceptions ... 246
Faults... 247
Exception Details in Faults ... 248
Exception Details .. 249
Exception Settings Window.. 251
Exception Details Demo ... 252
Fault Contracts .. 254
Fault Contract Example .. 255

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

Rev. 4.8 Copyright ©2018 Object Innovations Enterprises, LLC ix
 All Rights Reserved

Fault Contract Example – Client .. 256
Custom Faults ... 257
Faulted Channels... 258
Lab 7 ... 259
Summary ... 260

Chapter 8: WCF Security .. 269
Services and Security.. 271
Security Aspects of Services... 272
Transfer Security... 273
Transport Security... 274
Scenarios for Transport Security .. 275
Configuring Transport Security .. 276
Transport Security Example ... 277
Host’s Security Configuration .. 278
Client’s Security Configuration .. 279
Message Security .. 280
Scenarios for Message Security.. 281
Configuring Message Security.. 282
Other Security Modes ... 283
Certificates .. 284
Certificate Demo... 285
Managing Certificates... 286
Exception Details .. 290
Client Certificate Configuration ... 292
Sending Credentials .. 295
Username Credentials ... 296
Username Example ... 297
Lab 8 ... 300
Summary ... 301

Chapter 9: WCF Routing... 313
WCF Routing Service ... 315
Protocol Bridging Example .. 316
Service Contract and Implementation... 317
Service Configuration ... 318
Hosting the Service ... 319
Client Application... 320
Configuring the Router ... 321
Running the Example.. 323
Router Configuration File ... 324
Routing Contracts ... 327
Message Filters ... 328
EndpointName Message Filter.. 329
EndPointName Router Configuration... 330
Incoming Endpoints and the Client .. 332

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

Rev. 4.8 Copyright ©2018 Object Innovations Enterprises, LLC x
 All Rights Reserved

Error Handling .. 333
Backup List Example.. 334
Running Backup List Example ... 335
WCF Routing Scenarios ... 336
Lab 9 ... 339
Summary ... 340

Appendix A: Learning Resources.. 351

Appendix B: Hosting in IIS 7.5.. 355
Internet Information Services ... 356
Installing IIS 7.5 ... 357
WCF with IIS 7.5.. 358
.NET Framework Version... 359
Registering ASP.NET... 362
Demo – Hello WCF .. 363
A Service Contract.. 365
A Website for the Service ... 366
WCF Service Template... 368
Service Configuration ... 369
Referencing the Class Library .. 370
Examining the Service in the Browser ... 371
WCF Clients.. 372
Creating WCF Clients... 373
Demo – A Client for Hello WCF.. 374
Service as an IIS Application.. 378
Converting to an Application.. 379
Configuring as an Application.. 380
Moving a WCF Solution... 381

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 1
 All Rights Reserved

Chapter 1

WCF Essentials

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 2
 All Rights Reserved

WCF Essentials

Objectives

 After completing this unit you will be able to:

 Explain how WCF unites and extends existing
distribution technologies.

 Explain the concepts of address, binding, contract
and endpoint.

 Describe how WCF services can be hosted

 Create a simple self-hosted WCF service configured
via code.

 Implement a client of a WCF service using a Channel
Factory.

 Use a configuration file to configure a service.

 Configure a service to export metadata.

 Use metadata to automatically generate a proxy for a
service.

 Understand the WCF architecture and runtime.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 3
 All Rights Reserved

What Is WCF?

 Windows Communication Foundation (WCF) is a
new service-oriented programming framework for
creating distributed applications.

 It was previously known as ‘Indigo’ and is part of .NET 3.0
and higher.

 WCF is designed to provide one mechanism for
building connected applications:

 Within app domains

 Across app domains

 Across machines

 WCF builds upon and extends existing ways of
building distributed applications:

 ASMX Web services, .NET Remoting, COM, MSMQ.

 All these do the same basic job (connecting elements
in distributed applications) but they are very
different at the programming level, with complex
APIs and interactions.

 WCF provides one model for programming distributed
applications. Developers only need to learn one API.

 WCF leverages existing mechanisms.

 It uses TCP, HTTP and MSMQ for transport.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 4
 All Rights Reserved

WCF Services

 When using WCF, you create and consume services.

 A service comprises a set of related operations, which the
programmer sees as method calls.

 Services are described by metadata, which clients can
use to determine what operations are available, and
how the service can be contacted.

 Metadata for WCF services is similar to the WSDL used by
web services.

 Clients and services exchange messages.

 A client (which can be another service) communicates with a
WCF service by sending and receiving messages. WCF was
designed to use SOAP as its messaging mechanism, and
SOAP messages can be sent using a number of transports.

 Using SOAP does not imply that WCF communication is
inefficient; efficient binary encodings are employed
whenever possible.

 More recently, REST services over HTTP have been
retrofitted to WCF through the REST starter kit.

 WCF supports several transports out of the box.

 TCP, HTTP, HTTPS and MSMQ.

 Custom transports can be added.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 5
 All Rights Reserved

WCF Services

 WCF supports the WS-* family of Web service
protocols.

 The WS-* family of protocols have been developed by
various bodies (including OASIS and W3C) to provide
features such as security, transactions and reliable messaging
to web services.

 WCF is very good at interop.

 Support for a wide range of transports, encodings and the
WS-* protocols means that WCF services can interoperate
with a wide range of platforms and technologies, including
J2EE and web services using WS-* protocols.

 WCF provides a foundation for service orientation.

 WCF helps developers write distributed applications in which
loosely coupled services are called by clients and one
another.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 6
 All Rights Reserved

Service Orientation

 Service orientation is characterized by four concepts.

 Boundaries are explicit

 The boundary between client and service is explicit and
highly visible, because calls are made via SOAP messages.
There is no pretending – as there is in DCOM and Java’s
RMI – that you are simply playing with a remote object, and
can thus ignore the cost of remoting.

 Services are autonomous

 Services are independent entities that each have their own life
cycle; they may have been developed completely
independently of one another. There is no run-time making
sure that services work well together, and so services must be
prepared to handle failure situations of all sorts.

 Share schemas and contracts, not classes

 Services are not limited to implementation in OO languages,
and so service details cannot be provided in terms of classes.
Services should share schemas and contracts, and these are
typically described in XML.

 Use policy-based service compatibility

 Services should publish their requirements (i.e. requiring
message signing or HTTPS connections) in a machine
readable form. This can be used at runtime to ensure
compatibility between service and client.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 7
 All Rights Reserved

WCF and Web Services

 Even though it uses SOAP messaging, WCF is more
than simply another way of writing Web services.

 WCF can be used to write traditional Web services, as well
as more sophisticated services that can use the WS-*
protocols. But the design of WCF means that it provides a far
more general solution to distribution than Web services.

 WCF can use several transports.

 Web services tend to use HTTP or HTTPS, while WCF is
configured to use TCP, HTTP, HTTPS and MSMQ. It is also
possible to add new transports, should the need arise.

 WCF can work throughout the enterprise.

 WCF services can be hosted in-process, by a Windows
Service or IIS. Message exchange will be optimized to use
the most efficient method for exchanging data for a particular
scenario.

 WCF is good at interop.

 WCF services can interoperate with a number of different
platforms and technologies.

 WCF is highly customizable.

 It is possible to customize almost every part of WCF, adding
or modifying transports, encodings and bindings, and
plugging in new ‘behaviors’ that affect the way WCF
services work.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 8
 All Rights Reserved

WCF and Web API

 A recent approach to creating distributed
applications is ASP.NET Web API1.

 ASP.NET Web API is a framework for building and
consuming HTTP services.

 It is built into ASP.NET and can be used by both Web Forms
and MVC applications, as well as used standalone.

 Relying on standard HTTP, Web API facilitates creating
services that can reach a wide variety of devices.

 Visual Studio 2017 provides templates that facilitate creating
Web API services.

 Web API does not dictate a particular architectural style, but
it is a great platform for implementing RESTful Web
services.

 Web API was designed from the ground up to work
with HTTP and thus has almost universal reach to
many devices.

 WCF, although it can interoperate with many
platforms, does not have this universal reach.

 WCF has extensive support of WS-* and can run
over many protocols besides HTTP.

1 Web API is covered in the Object Innovations course 4147, ASP.NET Web API Essentials Using C#.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 9
 All Rights Reserved

WCF = ABC

Service

CBA

CBA

CBA

A

B

C

Client
C B A

= address

= binding

= contract

Where?

How?

What?

CB A = an endpoint

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 10
 All Rights Reserved

Address, Binding, Contract

 An address defines where a service can be found.

 It will often be an HTTP address, although other addressing
schemes are supported.

 A binding defines how a service can be contacted

 Via HTTP, TCP, MSMQ or some custom mechanism.

 A contract defines what a service can do.

 In terms of method calls, their arguments and return types.

 A combination of an address, a binding and a
contract is called an endpoint.

 A service can expose more than one endpoint, and endpoint
data can be made available to clients in the form of metadata.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 11
 All Rights Reserved

Example – Hello WCF

 A contract defines a set of operations that a service
supports.

 Define a contract as an interface decorated with the
ServiceContract attribute.

 Decorate operations with the OperationContract attribute.

[ServiceContract]
public interface IHello
{
 [OperationContract]
 string SayHello(string name);
}

 A service class implements the interface.

 And so it has to implement all the operations defined in the
contract.

public class Hello : IHello
{
 public string SayHello(string name)
 {
 return "Hello, " + name;
 }
}

 Note that this code says nothing about how the client
communicates with the service.

 It is only the 'C' of the service 'ABC'.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 12
 All Rights Reserved

Hosting Services

 There are four ways to host a WCF service.

 Self-hosting in an EXE.

 Use any type of EXE: Console application, Windows
application (Windows Forms or WPF), or Windows Service.

 Need to manage service lifecycle yourself.

 Hosting in IIS.

 IIS will manage the service lifecycle for you, starting the
service when the first request comes in.

 You can only use HTTP and port 80.

 Configure the service using a .svc file.

 Hosting in Windows Process Activation Service
(WAS).

 WAS is a feature that is part of Vista, Windows 7 and above,
and Windows Server 2008 and above.

 Similar advantages to hosting in IIS, but you can use other
transports and ports as well.

 WAS also uses .svc files.

 Hosting in Windows Server AppFabric.

 This new hosting engine, available on Windows 7 & above &
Windows Server 2008 R2 & above, is optimized for hosting
WCF and WF (Windows Workflow Foundation) services.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 13
 All Rights Reserved

Demo – Hello WCF

 We’ll create a “Hello WCF” service that is self-
hosted.

 Our solution will have three projects:

 A class library implementing the service

 A console application that hosts the service.

 A console application that invokes the service

1. Run Visual Studio 2017 as Administrator2. Create a new blank
solution HelloWCF in the Demos folder.

2. In Solution Explorer, right-click over the solution and choose
Add | New Project.

2 From the Start menu, right-click on Visual Studio 2017 and choose Run as administrator. When working
with WCF it is important to always run Visual Studio as Administrator. If you forget, you’ll encounter
strange errors!

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 14
 All Rights Reserved

Demo – Hello WCF (Cont’d)

3. From the WCF project types choose the WCF Service Library
template. Enter HelloLib as the name of your new project.

4. Change the name of the file Service1.cs to HelloService.cs, and
IService1.cs to IHelloService.cs. Say Yes to renaming all
references in the project to the corresponding code element.

5. Examine the contents of these files, which include comments
and starter code for both a Service Contract and also a Data
Contract.

6. Examine also the file App.config. The renaming was not
perfect, as under the <baseAddresses> tag there is still use of
Service1. There is actually a reason for this, as we’ll see when
we make us of the test programs WcfSvcHost.exe and
WcfTestClient.exe.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 15
 All Rights Reserved

A Service Contract

7. Edit IHelloService.cs to include only a simple service contract
IHelloService with one method, SayHello().

namespace HelloLib
{
 [ServiceContract]
 public interface IHelloService
 {
 [OperationContract]
 string SayHello(string name);
 }
}

8. Edit HelloService.cs to implement the service contract.

namespace HelloLib
{
 public class HelloService : IHelloService
 {
 public string SayHello(string name)
 {
 return "Hello: " + name;
 }
 }
}

9. Build the service library project.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 16
 All Rights Reserved

Visual Studio WCF Test Host

 To test the service we need both a host and a client
program.

 We will implement both, but first let’s look at tools
provided with Visual Studio.

 There is a test host WcfSvcHost.exe and a test client
WcfTestClient.exe.

 Both are located in3:

Microsoft Visual Studio\2017\Community\Common7\IDE

 This folder is already on the path of the Visual Studio
command prompt.

 A WCF Service Library project created using Visual
Studio is set up to invoke the test host and test client
automatically.

 Look at the Debug tab of the project’s properties.

 Also, “Enable the Visual Studio hosting process” is checked.

 When you build and run the class library, the test host will
run, and then the test client will start.

3 In 64-bit Windows the top-level folder is Program Files (x86); in 32-bit Windows the top-level folder if
Program Files. Depending on the version of Visual Studio you have, Community will be replaced by
Professional or Enterprise.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 17
 All Rights Reserved

WCF Test Client

1. Run the class library project. A bubble will be displayed at the
bottom of your screen indicating that WfcSvcHost has started.

2. WcfTestClient will now start, and it has automatically
connected to the test host for your service library. A tree view of
service projects has been populated with your service project.

3. Double-click on the SayHello() method.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 18
 All Rights Reserved

WCF Test Client (Cont’d)

4. You will see a form in which you can enter values for the
parameters to SayHello().

5. In our case there is only one parameter. Enter a value for the
name and click Invoke. After a few seconds you should see the
response. (You may click OK to the security warning and select
not to see the warning anymore.)

6. This concludes our quick test. Close the test client by File | Exit
or by clicking the at top right of the test client window.
Normally the test host will also close.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 19
 All Rights Reserved

Closing the Test Host Manually

 A pitfall may be that an instance of WCF Service
Host remains running when you don’t think it is.

 To check for this, display the hidden icons from the task bar.

 You may see an icon for WCF Service Host.

 Right-click over the icon and choose Exit from the context
menu.

7. The program at this point is saved in
Chap01\HelloWCF\LibraryOnly.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 20
 All Rights Reserved

Self-Hosting

 Next we will add a console application that will host
our service.

1. Right-click over the solution and choose Add | New Project.

2. From the Windows Classic Desktop group choose Console App
(.NET Framework). Assign the name Host and click OK.

3. Add a Project reference to HelloLib and a Framework reference
(under Assemblies) to System.ServiceModel. Import these two.

using System.ServiceModel;
using HelloLib;

4. Provide this code in Main().

using (ServiceHost host = new ServiceHost(
 typeof(HelloService)))
{
 host.AddServiceEndpoint(
 typeof(IHelloService),
 new BasicHttpBinding(),
 "http://localhost:8000/HelloService");
 host.Open();

 Console.WriteLine(
 "Press ENTER to terminate service host");
 Console.ReadLine();
}

5. Right-click on the Host project and choose Set as Startup

Project from the context menu.

6. Build and run to make sure you get a clean compile and no
runtime errors for the host. Press the ENTER key and exit. The
project is saved in HelloWCF\LibraryAndHost.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 21
 All Rights Reserved

ServiceHost Class

 The ServiceHost is used to implement a host.

 In self-hosting you instantiate an instance of ServiceHost
directly.

 IIS and WAS use ServiceHost on your behalf.

 The main constructor requires a service type and
zero or more base addresses.

public ServiceHost(
 Type serviceType,
 params Uri[] baseAddresses
)

 Our example illustrated the simplest case with no
base addresses specified.

ServiceHost host = new ServiceHost(
 typeof(HelloService))

 Endpoints must then supply an absolute URI for an address.

host.AddServiceEndpoint(
 typeof(IHelloService), // contract
 new BasicHttpBinding(), // binding
 "http://localhost:8000/HelloService");
 // address

 Note the “ABC” of address, binding and contract for the
endpoint.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 22
 All Rights Reserved

Host Life Cycle

 A service host life cycle is controlled by calls to
Open() and Close().

 Open() allows calls into the host, which are processed by
worker threads.

 Close() gracefully exits the host, refusing new calls to the
host but allowing calls in progress to complete.

 The CloseTimeout property (10 seconds by default) specifies
the length of time the host will wait for the calls in progress
to complete before shutting down anyway.

 The C# using statement facilitates managing the
host’s life cycle.

 ServiceHost implements the IDisposable interface. Exiting a
using block, either through normal program flow or via an
exception, will call the Dispose() method, which in turn calls
Close().

using (ServiceHost host = new ServiceHost(...
{
 ...
 host.Open();

 Console.WriteLine(
 "Press ENTER to terminate service host");
 Console.ReadLine();
}

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 23
 All Rights Reserved

WCF Clients

 As in all common distribution technologies, clients
interact with services through proxies.

 The proxy hides details of the communication mechanism
being used from the client code.

 The proxy implements the same interface as the service, so
that the client can use exactly the same calls.

 Proxies are created using metadata provided by the
service.

 Note that the page shown in the previous page gives
instructions for generating a proxy.

 The ABC (address, binding, contract) information
provided by the service can be used to construct a
proxy that

 Knows where to contact the service.

 Implements code to use the appropriate communication
mechanism (eg. HTTP versus TCP).

 Implements the operations defined in the service interface.

 There are two approaches to creating proxies:

 “On the fly” using the ChannelFactory class.

 Auto-generate in advance by using a tool such as SvcUtil.exe
or by adding a Service Reference in Visual Studio.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 24
 All Rights Reserved

Channels

 Channels are used for communication between clients
and services in WCF.

 Client code creates a proxy.

 The client often uses a ChannelFactory object to create the
proxy. The proxy sends messages through the channel stack
to the Dispatcher, which makes a call to an endpoint on the
service.

 Service code often uses ServiceHost objects to manage
WCF services.

Client

Proxy

Protocol
Channel(s)

Transport
Channel

Protocol
Channel(s)

Transport
Channel

Dispatcher

Service Endpoints Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 25
 All Rights Reserved

Demo – A Client for Hello WCF

 We’ll create a console client.

1. Add a third project to the solution, another Console App (.NET
Framework). Specify Client as the name of your new project.

2. Add a reference to the System.ServiceModel assembly and
import the corresponding namespace4.

3. Provide the IHelloService service contract definition.

...
using System.ServiceModel;

namespace Client
{
 [ServiceContract]
 public interface IHelloService
 {
 [OperationContract]
 string SayHello(string name);
 }

 class Program
 {
 static void Main(string[] args)
 {
 ...

4 A shortcut for importing a namespace is to place the mouse cursor over an unrecognized symbol and press
Ctrl+Dot. Select using ... from the context menu. You may also right-click over the unrecognized symbol
and select Quick Action from the context menu.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 26
 All Rights Reserved

ChannelFactory

4. Provide the following code in Main(). This initialize a proxy
object as an instance of the ChannelFactory class. It is based
on an endpoint that is compatible with the endpoint in the
service.

EndpointAddress ep = new EndpointAddress(
 "http://localhost:8000/HelloService");
IHelloService proxy =
 ChannelFactory<IHelloService>.CreateChannel(
 new BasicHttpBinding(), ep);

5. Provide the following code to use the proxy object to call the

SayHello() method of the service and display the result. Exit the
client program when the user presses the ENTER key.

string result = proxy.SayHello("ChannelFactory");
Console.WriteLine(result);

Console.WriteLine(
 "Press ENTER to terminate client");
Console.ReadLine();

6. Delete the App.config files from each project, because they are

not used now.5

7. Build the solution, now consisting of three projects.

5 The configuration file was used in the service library project to enable generation of metadata, which was
used by the test host and test client. We will discuss configuration files and metadata shortly.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 27
 All Rights Reserved

Running the Example

 One way to run the example is manually to first start
the host and then start the client.

 Right-click over the project and select Debug | Start new
instance from the context menu.

 Alternatively, you can configure the solution to
automatically run the two projects, starting the host
first.

 Right-click over the solution and select Set StartUp Projects
from the context menu. Choose an action of Start for both
Host and Client. Move the Host up to top position.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 28
 All Rights Reserved

Running the Example (Cont’d)

Output from Host:

Press ENTER to terminate service host

Output from Client:

Hello: ChannelFactory
Press ENTER to terminate client

 Terminate first the client and then the host.

 The solution is saved in HelloWCF\ChannelFactory.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 29
 All Rights Reserved

Base Address

 Our next example illustrates specifying a base
address for the http:// addressing scheme.

Uri httpBaseAddress =
 new Uri("http://localhost:8000/");
using (ServiceHost host = new ServiceHost(
 typeof(HelloService), // service type
 httpBaseAddress)) // base address

 In adding an endpoint we now specify a relative
address.

host.AddServiceEndpoint(
 typeof(IHelloService), // contract
 new BasicHttpBinding(), // binding
 "HelloService"); // relative address

// complete address is
// http://localhost:8000/HelloService

 See Chap01\HelloWCF\BaseAddress.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 30
 All Rights Reserved

Base Address Example

 We’ve just seen an alternative way of specifying the
address for an endpoint.

 The service host has one or more base addresses, and
endpoints are specified using relative addresses.

host.AddServiceEndpoint(
 typeof(IHelloService), // contract
 new BasicHttpBinding(), // binding
 "HelloService"); // relative address
// complete address is
// http://localhost:8000/HelloService

 We instrument the host code to display all the base
addresses before calling Open().

ShowBaseAddresses(host.BaseAddresses);
...
static void ShowBaseAddresses(
 ReadOnlyCollection<Uri> addresses)
{
 Console.WriteLine("Base Addresses:");
 foreach (Uri addr in addresses)
 Console.WriteLine(" {0}",
 addr.OriginalString);
}

 Invocation code in client program is same, because
we’ve not changed the contract, address and binding.

 Here is the output from running the host:

Base Addresses:
 http://localhost:8000/
Press ENTER to terminate service host

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 31
 All Rights Reserved

Uri Class

 The Uri class encapsulates a uniform resource
identifier (URI) and provides easy access to the parts
of the URI.

 Common properties include:

AbsolutePath Absolute path of the URI

IsAbsoluteUri Is the URI instance absolute?

LocalPath Local operating system representation of
a file name

OriginalString The original URI string that was passed
to the Uri constructor

PortNumber Port number of the URI

Scheme Scheme name of the URI (e.g. file, ftp,
http, https, net.pipe, net.tcp, etc.)

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 32
 All Rights Reserved

Configuration Files

 In WCF there are always two options for supplying
configuration information:

 In code, like we’ve done so far.

 In configuration files such as App.config and Web.config.

 As an example, the file App.config in the Host project
provides the same configuration information as the
WCFHello\BaseAddress code example.

 See WCFHello\Config for the complete example.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <services>
 <service name="HelloLib.HelloService">
 <endpoint
 address="HelloService"
 binding="basicHttpBinding"
 contract="HelloLib.IHelloService" />
 <host>
 <baseAddresses>
 <add baseAddress=
 "http://localhost:8000/" />
 </baseAddresses>
 </host>
 </service>
 </services>
 </system.serviceModel>
</configuration>

 Again we specify the address by the combination of a base
address and a relative address.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 33
 All Rights Reserved

Simplified Host Code

 When we have configuration specified in a
configuration file, the host code becomes simpler.

static void Main(string[] args)
{
 using (ServiceHost host = new ServiceHost(
 typeof(HelloLib.HelloService)))
 {
 ShowBaseAddresses(host.BaseAddresses);
 host.Open();
 Console.WriteLine(
 "Press ENTER to terminate service host");
 Console.ReadLine();
 host.Close();
 }
}

...

 The last three examples all had virtually identical
client code6; we did not change the contract, binding
and address, only how it was described.

 HelloWCF\ChannelFactory

 HelloWCF\BaseAddress

 HelloWCF\Config

6 We made one small change in the client: the name used in the greeting message identifies the example.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 34
 All Rights Reserved

Proxy Initialization

 Up until now we’ve been creating a proxy directly by
using a channel factory.

 This approach makes several assumptions:

 You know the endpoint address.

 You have a copy of the server contract definition.

 You know the required protocols or binding configurations.

 If you are developing both the service and the client,
these are reasonable assumptions.

 But in the world of distributed computing when you
need to talk to a service you don’t own, these are not
reasonable assumptions.

 When you don’t own both the client and the service
sides, a more effective approach is to generate the
proxy automatically from metadata exported by the
service.

 The metadata enables you to “know” the things you need to
know.

 The process of constructing a proxy is automated through the
use of tools.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 35
 All Rights Reserved

Metadata Exchange

 Metadata can be exported by a service through a
special endpoint, known as a metadata exchange
endpoint.

 This endpoint enables the generation of a proxy and a
configuration file in the client project.

 To support this metadata exchange you need to do
two things:

 Add the metadata exchange endpoint to the host
configuration.

 Enable the metadata exchange behavior.

 A metadata exchange (mex) endpoint, like other
endpoints, requires an address, a binding, and a
contract.

 For the address you need the base address for the selected
binding protocol (we’re using http exclusively in this
chapter).

 The contract is the predefined IMetadataExchange.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 36
 All Rights Reserved

Metadata Exchange Example

 We illustrate metadata exchange with a new variation
of our HelloWCF example.

 See HelloWCF\SvcUtil. Here is the host’s configuration file,
with changes indicated in bold.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <services>
 <service
behaviorConfiguration="serviceBehavior"
name="HelloLib.HelloService">
 <endpoint
 address="HelloService"
 binding="basicHttpBinding"
 contract="HelloLib.IHelloService" />
 <endpoint binding="mexHttpBinding"
 contract="IMetadataExchange"/>
 <host>
 <baseAddresses>
 <add
baseAddress="http://localhost:8000/" />
 </baseAddresses>
 </host>
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior name="serviceBehavior">
 <serviceMetadata httpGetEnabled="True"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 37
 All Rights Reserved

Behaviors

 A behavior affects the service model locally, on either
the service side or client side.

 A behavior is not part of the metadata and does not affect the
contract. They are not shared between service and client.

 Rather they have a local effect on how the service model
processes messages.

 Service behaviors exist for metadata, debugging,
security, serialization and throttling.

 Client behaviors exist for debugging, security,
serialization, timeouts, and routing.

 A new <behaviors> element is provided in the
configuration file.

 A behavior has a name.

 This name is used by the behaviorConfiguration attribute of
the <service> element to tie a service to a behavior7.

 Client behaviors work in a similar manner in the
configuration file.

 Behaviors can also be specified in code.

7 This use of the behaviorConfiguration attribute is optional in WCF 4.0.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 38
 All Rights Reserved

A Service in a Browser

 A nice feature of WCF is that it enables viewing
useful information about the service in a browser.

 Point the browser to the base address.

 For our example the base address is http://localhost:8000/.

 This useful page tells you how to create and use a proxy in
your client program. (If no metadata exchange, you would
see nice instructions for implementing it.)

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 39
 All Rights Reserved

Proxy Demo – SvcUtil

 The AutoProxy folder in the Demos directory contains
starter code.

 It is a copy of HelloWCF\Config with App.config modified
to support metadata exchange, as we have seen.

1. Build the starter solution.

2. Start the host.

3. Point your browser to http://localhost:8000/ and verify that the
information about HelloService shown on the previous page is
displayed. Note the instructions.

4. Bring up a Visual Studio command prompt and navigate to the
Demos\AutoProxy folder.

5. Enter this command (note that it is not case sensitive):

svcutil.exe http://localhost:8000/?wsdl

6. There should be created files HelloService.cs and

output.config.

7. Copy these files down to the Client folder. Rename
output.config to App.config. (If App.config already existed,
you should edit the configuration information from
output.config into it.) Add the files to the Client project.

8. Terminate the host and rebuild the solution.

9. In Program.cs in the Client project remove the using statement
importing the namespace System.ServiceModel. (It is now only
needed in the proxy that was generated. You still need a
reference to the assembly, though.)

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 40
 All Rights Reserved

Proxy Demo – SvcUtil (Cont’d)

10. Remove the interface definition.

11. Remove the first two statements in Main() setting up an
endpoint and initializing a proxy from a channel factory.

12. Examine the file HelloService.cs and note that the proxy
class is HelloServiceClient.

13. Provide the following code to initialize the proxy and to close
it when done. Again we’ll follow the pattern of the C# using
statement.

static void Main(string[] args)
{
 using (HelloServiceClient proxy =
 new HelloServiceClient())
 {
 string result = proxy.SayHello("SvcUtil");
 Console.WriteLine(result);

 Console.WriteLine(
 "Press ENTER to terminate client");
 Console.ReadLine();
 }
}

14. Build the solution. Start the host and then the client. You

should see this output from the client:

Hello: SvcUtil
Press ENTER to terminate client

15. Terminate the client and then the host. The completed demo

is saved in HelloWCF\SvcUtil. The invocation of svcutil.exe is
done in a small batch file MakeProxy.bat

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 41
 All Rights Reserved

Proxy Demo – Visual Studio Proxy

 Continue in the AutoProxy folder from the previous
demo.

1. In the Client project delete the files HelloService.cs and
App.config.

2. Start the host outside of Visual Studio. (Right-click over the file
Host.exe in the bin\Debug folder and choose Run as
Administrator from the context menu.)

3. In Visual Studio right-click over References in Client project
and choose Add Service Reference. For the address enter
http://localhost:8000/ and click Go. Expand the tree so that you
can see the contract. Leave the namespace as it is. Click OK.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 42
 All Rights Reserved

Proxy Demo – VS Proxy (Cont’d)

4. Terminate the host.

5. In Solution Explorer, observe the new files in the Client project.
You can see all files by clicking the Show All Files button .
The important new files are Reference.cs and app.config.

6. Examine Reference.cs. The proxy class is HelloServiceClient
and the namespace is Client.ServiceReference1. (We could
have changed the namespace when we generated the service
reference.)

7. All we need to do to use the preceding client program is to
import the namespace.

using Client.ServiceReference1;

8. Build the solution. Test by starting the host and then the client.

The completed demo is saved in HelloWCF\VSProxy.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 43
 All Rights Reserved

Standard Endpoints

 An endpoint for metadata exchange almost always
has exactly the same elements.

 To obviate the need for repetitive configuration, WCF 4.5
provides several standard endpoints.

 See the simplification in HelloWCF\StandardEndpoints.

<configuration>
 <system.serviceModel>
 <standardEndpoints>
 <mexEndpoint>
 <standardEndpoint />
 </mexEndpoint>
 </standardEndpoints>
 <services>
 <service name="HelloLib.HelloService">
 <endpoint address="HelloService"
 binding="basicHttpBinding"
 contract="HelloLib.IHelloService"
 />
 ...
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior>
 <serviceMetadata httpGetEnabled="True"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

 Other standard endpoints are available for discovery,
workflow and web.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 44
 All Rights Reserved

Lab 1

Creating a Simple Service and Client

In this lab, you will use Visual Studio 2015 to create a simple
WCF service that is self-hosted. The metadata exchange endpoint
is implemented with the help of starter code provided by Visual
Studio. You will create a simple Console client program. Create
the proxy by adding a Service Reference using Visual Studio. You
will also experiment with changing the binding from
basicHttpBinding to wsHttpBinding.

Detailed instructions are contained in the Lab 1 write-up at the end
of the chapter.

Suggested time: 50 minutes

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 45
 All Rights Reserved

WCF Architecture

 Services and clients exchange SOAP messages.

 But they are not limited to text format; they can be sent in
binary if that is more efficient.

 Channels abstract the communication process.

 Channels can be composed, so that the output from one
channel acts as the input to another.

 There are two types of channel.

 Transport channels implement transport mechanisms

 Such as HTTP and TCP/IP.

 Protocol channels implement elements of the SOAP-
based messaging protocol

 For example, the security channel implements SOAP
security.

 The channel stack can be specified in configuration files or in
code.

 Behaviors extend or modify service and client
operation

 For example, whether metadata is published, or
authentication is required.

 Behaviors can be specified in configuration or code.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 46
 All Rights Reserved

WCF Architecture

 The following diagram illustrates the overall
architecture of WCF.

 We looked at this diagram earlier in the chapter when we
created a simple proxy using the ChannelFactory class.

Client

Proxy

Protocol
Channel(s)

Transport
Channel

Protocol
Channel(s)

Transport
Channel

Dispatcher

Service Endpoints

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 47
 All Rights Reserved

ServiceHost and ChannelFactory

 ServiceHost is used on the server side.

 A ServiceHost is used to host services in code (ie. Self-
hosted services). The ServiceHost creates a
ServiceDescription object, which consists of a type
(implementing the service), a collection of behaviors (which
control how the service behaves) and descriptions of one or
more endpoints.

 The WCF runtime uses the ServiceDescription to build the
channel stack and configure the endpoints.

 ChannelFactory is used on the client side.

 A ChannelFactory creates a ClientDescription. This consists
of a collection of behaviors, and one endpoint. There is no
need for a type, because clients don’t implement service
contracts.

 The WCF runtime uses the ClientDescription to build the
channel stack and proxy.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 48
 All Rights Reserved

Service Contexts and Instances

 Each .NET host process can contain one or more app
domains, and each app domain may contain zero or
more ServiceHosts.

 Within a ServiceHost, service instances live in contexts; a
WCF context is similar to a COM+ (Enterprise Services)
context or a .NET context-bound object, in that it provides an
environment in which service instances live.

 Properties and methods on the context allow the developer to
control the behavior of the service instance, especially with
respect to concurrency and object lifetime. A context can
host at most one instance of a service object, so it is possible
to have empty contexts.

Host Process

AppDomain

 ServiceHost

 Context

Service
Object

 Empty
Context

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 49
 All Rights Reserved

Summary

 WCF unifies a number of existing technologies for
creating distributed applications.

 WCF services are defined by addresses, bindings and
contracts.

 WCF services can be hosted in IIS or WAS, or they
can be self-hosted.

 We will use self-hosting throughout this course.

 WCF services and clients can be configured in code
or via XML configuration files.

 You can implement a client of a WCF service using a
Channel Factory.

 A WCF service can be configured to export metadata,
which can be used to automatically generate a proxy
for a service.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 50
 All Rights Reserved

Lab 1

Creating a Simple WFC Service and Client

Introduction

In this lab, you will use Visual Studio 2017 to create a simple WCF service that is self-
hosted. The metadata exchange endpoint is implemented with the help of starter code
provided by Visual Studio. You will create a simple Console client program. Create the
proxy by adding a Service Reference using Visual Studio. You will also experiment with
changing the binding from basicHttpBinding to wsHttpBinding.

Suggested Time: 50 minutes

Root Directory: OIC\WcfCs

Directories: Labs\Lab1 (do your work here)

Chap01\SimpleMath (answer)

Part 1: Create the Service Library

1. Start Visual Studio 2017 as Administrator. Create a new blank solution SimpleMath.

2. Add a new project MathLib to your solution using the WCF Service Library
template.

3. Rename the file IService1.cs to IMath.cs and the file Service1.cs to MathService.cs.

4. In the files IMath.cs and MathService.cs, delete the starter code except for the
namespace imports and the declaration of the MathLib namespace.

5. In the file IMath.cs, provide the following simple service contract IMath.

namespace MathLib
{
 [ServiceContract]
 public interface IMath
 {
 [OperationContract]
 int Add(int x, int y);
 [OperationContract]
 int Subtract(int x, int y);
 }
}

6. In the file MathService.cs, provide the following implementation:

namespace MathLib

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 51
 All Rights Reserved

{
 public class MathService : IMath
 {
 public int Add(int x, int y)
 {
 return x + y;
 }

 public int Subtract(int x, int y)
 {
 return x - y;
 }
 }
}

7. Edit App.config to make sure the service name is MathLib.MathService and the

contract MathLib.IMath. (Visual Studio should have done this rename for you when
you changed the names of the files.)

8. Build and run the solution. This should start up both the test host and the test client.
Exercise both Add and Subtract.

Part 2: Create the Host

1. Add a new Console Application Host to your solution.

2. Add a reference to the MathLib project and the System.ServiceModel assembly.

3. In Program.cs import the namespaces System.ServiceModel and MathLib.

4. Provide code in Main() to initialize and open a ServiceHost object.

static void Main(string[] args)
{
 using (ServiceHost host = new ServiceHost(
 typeof(MathService)))
 {
 host.Open();
 Console.WriteLine("Press ENTER to terminate service host");
 Console.ReadLine();
 }
}
5. Copy the App.config file from the MathLib project to the Host project and add it to
the Host project. (You can do this by drag and drop in Solution Explorer.) Edit the base
address. Note that we will go with the empty string for the contract address, so we
provide a complete URI for the base address. You can delete App.config from MathLib.

<system.serviceModel>
 <services>
 <service name="MathLib.MathService">
 <endpoint address="" binding="basicHttpBinding"
 contract="MathLib.IMath">
 <identity>

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 52
 All Rights Reserved

 <dns value="localhost" />
 </identity>
 </endpoint>
 <endpoint address="mex" binding="mexHttpBinding"
 contract="IMetadataExchange" />
 <host>
 <baseAddresses>
 <add baseAddress="http://localhost:8000/MathService" />
 </baseAddresses>
 </host>
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior>
 <!-- To avoid disclosing metadata information,
 set the value below to false and remove the metadata endpoint
 above before deployment -->
 <serviceMetadata httpGetEnabled="True"/>
 <!-- To receive exception details in faults for debugging
 purposes, set the value below to true. Set to false before
 deployment to avoid disclosing exception information -->
 <serviceDebug includeExceptionDetailInFaults="False" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
</system.serviceModel>

6. Build the solution. Test that the host will start up.

Part 3: Implement the Console Client

1. Add a new Console project Client to your solution.

2. Run the host as Administrator outside of Visual Studio. Verify that it has been
correctly implemented by pointing your browser to
http://localhost:8000/MathService. You should see a page for the MathService
service. Copy this URI into the clipboard.

3. In the Client project right-click over References and choose Add Service Reference.

4. Paste the URI (http://localhost:8000/MathService) into the Address: text box.

5. Click Go. Expand the tree to show the IMath contract.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 53
 All Rights Reserved

6. Click OK.

7. Close the host.

8. In Program.cs import the namespace Client.ServiceReference1.

9. Implement a simple test program to assign values to integer variable x and y and
invoke both methods of the contract through the proxy.

class Program
{
 static void Main(string[] args)
 {
 int x = 7;
 int y = 5;
 using (MathClient proxy = new MathClient())
 {
 int sum = proxy.Add(x, y);
 Console.WriteLine("Sum of {0} and {1} is {2}", x, y, sum);
 int diff = proxy.Subtract(x, y);
 Console.WriteLine("Difference of {0} and {1} is {2}",
 x, y, diff);
 }
 Console.WriteLine("Press ENTER to terminate client");
 Console.ReadLine();
 }
}

10. Configure the properties of the solution for multiple startup projects (Host and

Client) with Host starting first.

11. Build and run the solution. Verify the output.

Sum of 7 and 5 is 12
Difference of 7 and 5 is 2
Press ENTER to terminate client

12. Close the client and then the host.

13. Now let’s try using a different binding. Edit App.config in the Host project to call for
wsHttpBinding.

 <service name="MathLib.MathService">
 <endpoint address="" binding="wsHttpBinding"
 contract="MathLib.IMath">

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 1

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC 54
 All Rights Reserved

14. Rebuild and run the solution. The host will startup fine, but you will hit a protocol
exception in the client.

15. There is a helpful error message that the client and service bindings may be
mismatched. Terminate debugging.

16. If the host is closed, run it again as Administrator outside of Visual Studio.

17. In the Client project delete the Service Reference.

18. Add a Service Reference using the same procedure we used before.

a. Run the host as Administrator outside of Visual Studio.

b. In the Client project right-click over References and choose Add Service
Reference.

c. Enter the URI http://localhost:8000/MathService into the Address: text
box.

d. Click Go. Expand the tree to show the IMath contract. (You could omit
expanding the tree – this part is simply to build confidence you have the
right service.)

e. Click OK.

19. Close the Host.

20. Rebuild and run the solution. Now it should work again!

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

269

Chapter 8

WCF Security

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

270

WCF Security

Objectives

 After completing this unit you will be able to:

 Understand the security aspects of services.

 Explain the difference between Transport and
Message security.

 Configure WCF services and clients to communicate
over a secure channel.

 Work with certificates to use more security features
from WCF.

 Understand how to send credentials from a client to a
service.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

271

Services and Security

 So far we’ve discussed WCF services without taking
security concerns in consideration.

 Securing distributed services is about securing
communication among different software entities.

 The scenarios involved are somewhat similar to traditional
client-server applications, but with some nuances that will be
covered throughout this chapter.

 For example, very frequently we are not able to rely
on the medium where the message is being
transmitted to ensure confidentiality.

 Third party software could have access to the messages
exchanged between client and service.

 So it is imperative that actions are taken to ensure that only
client and service can read those messages.

 Several security aspects must be considered when
defining how you will secure a service.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

272

Security Aspects of Services

 Confidentiality

 The transmissions should be kept safe in such a way that
parties other than the intended receiver are not able to read or
understand the content.

 Integrity

 The receiver should be assured that the transmission contents
were not changed on its way from the sender.

 Authentication

 This involves identifying both ends (service and client) in the
communication channel.

 Authorization

 Once identified, the service must know whether the client is
entitled to execute an operation or not.

 Impersonation

 The service might be required in some cases to perform
operations on behalf of the client.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

273

Transfer Security

 WCF offers a number of options for securing the
information exchanged between a WCF service and a
client.

 Securing the information on its way from the server to the
client is about taking care of two security aspects already
mentioned: integrity and confidentiality.

 This foundational aspect of security is called transfer
security.

 We can configure a WCF service to work with the
following security modes: Transport, Message,
Mixed, Both and None.

 Choosing a security mode requires analysis of the
specific implementation scenario.

 Each mode has characteristics that are suitable for different
types of scenarios.

 We will see some examples in this chapter that will help you
decide on the security mode to be used for some of the most
popular WCF implementation scenarios.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

274

Transport Security

 The Transport security mode delegates the security-
related work on the communication to the transport
layer of the network.

 Security is handled by the communication protocol, such as
HTTPS or TCP.

 It provides integrity, confidentiality and
authentication.

 Integrity and confidentiality exist because transport security
encrypts all communication between service and client, so no
one can read the messages without the encryption key.

 Since the client’s credentials are contained in the encrypted
message, a good level of authentication is also achieved.

 It is a quick way of implementing security, and no
processing is done on the application layer.

 For this reason, Transport security has also the best
performance among the security modes.

 The negotiation of encryption details between client
and service is done automatically by the
communication protocol within the binding used.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

275

Scenarios for Transport Security

 Since all the processing is done on the transport layer,
it is the best approach to use when a WCF service
communicates with a non-WCF client.

 Transport security is great for intranet scenarios,
where both service and client are on the same
network.

 The reason for this is that reliance on the transport layer
means that this security mode can only guarantee transfer
security point-to-point.

 Therefore, Transport security scenarios must consider service
and client connecting directly with each other, with no
intermediaries.

 Transport Security works with all bindings except
WSFederationHttpBinding and WSDualHttpBinding.

 When you use the following bindings, Transport
Security will be enabled by default if you don’t
specify it in the configuration:

 NetTcpBinding

 NetPeerTcpBinding

 NetNamedPipeBinding

 NetMsmqBinding

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

276

Configuring Transport Security

 The most practical way of setting up security in a
WCF application is through the configuration file.

 Security configuration can also be set up through code,
although it is more cumbersome due to the large number of
properties.

 Typically, this is how the configuration looks like:

<system.serviceModel>
...
 <bindings>
 <netTcpBinding>
 <binding name="Secured">
 <security mode="Transport">
 <transport
 clientCredentialType="Windows"
 protectionLevel="EncryptAndSign"
 />
 </security>
 </binding>
 </netTcpBinding>
 </bindings>

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

277

Transport Security Example

 Let’s see a simple example of a client and a service
running on Transport security.

 Open the solution in the Transport folder in the chapter
directory.

 Build the solution and run the host and the client
separately1.

 Verify that the communication between client and service is
working by typing a name and clicking the Greet button. You
should see a hello message back from the service in the
screen.

 Now let’s take a look at how these applications are set
up to communicate securely.

 Open App.config on the Host project.

 The first to notice on this file when compared to the others
we have been dealing with is that the service endpoint has the
bindingConfiguration property explicitly set.

<service behaviorConfiguration="serviceBehavior"
 name="HelloLib.Hello">
 <endpoint address="Hello"
 binding="netTcpBinding" name="netTcp"
 contract="HelloLib.IHello"
 bindingConfiguration="Secured" />
...

1 Make sure that you have allowed access through a fire wall before exercising the client.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

278

Host’s Security Configuration

 The next different thing about this configuration file
is the <bindings> section.

 It includes details on security configuration for the binding.

 Note that the binding configuration here has the same name
set on the endpoint bindingConfiguration property.

<netTcpBinding>
 <binding name="Secured">
 <security mode="Transport">
 <transport clientCredentialType="Windows"
 protectionLevel="EncryptAndSign" />
 </security>
 </binding>
</netTcpBinding>

 Notice the values used for clientCredentialType and
protectionLevel properties.

 The clientCredentialType property is set to Windows, which
means that the identity that is running the application process
will be sent as a credential.

 The protectionLevel property is set to EncryptAndSign,
which means that the service will encrypt the message
contents and also append an encrypted checksum
representing its “signature” to each message. This provides
integrity, privacy and authenticity in the communication.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

279

Client’s Security Configuration

 The configuration on the client is just a bit different
from the other examples we’ve seen.

<netTcpBinding>
 <binding name="netTcp" closeTimeout="00:01:00"
 ...
 transferMode="Buffered">
 <security mode="Transport">
 <transport clientCredentialType="Windows"
 protectionLevel="EncryptAndSign"/>
 </security>
 </binding>
</netTcpBinding>

 Basically, what we see in the client is a configuration
that must match the security configuration from the
service.

 If you try to set the client with Message security and the
service with Transport security, an exception will be raised at
runtime when a service method is first called.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

280

Message Security

 When using Message security, the whole message
exchanged between service and client is encrypted.

 This security mode doesn’t rely on the transport
layer, since message encryption happens on the
application as a WCF feature.

 Security is provided end to end, since only client and
server can read the contents of the encrypted
message.

 The use of Message security may introduce a
performance hit due to the overhead of encrypting
and decrypting messages.

 This was not a concern when using Transport security as this
work was delegated to the Transport layer.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

281

Scenarios for Message Security

 Since this transfer mode provides security end to end,
it is ideal for Internet scenarios.

 In those scenarios, the client and the server are far away from
each other so that the message may travel through unknown
intermediaries.

 Hence, ensuring that only the service and the intended client
can read messages from each other is imperative.

 Message Security works with all bindings except
NetNamedPipeBinding.

 When you use the following bindings, Message
Security will be enabled by default if you don’t
specify it in the configuration:

 WSHttpBinding

 WSFederationHttpBinding

 WSDualHttpBinding

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

282

Configuring Message Security

 This is how the typical configuration for Message
security would look like on the service side:

<system.serviceModel>
...
 <bindings>
 <netTcpBinding>
 <binding name="Secured">
 <security mode="Message">
 <message
 clientCredentialType="Windows" />
 </security>
 </binding>
 </netTcpBinding>
 </bindings>

 The solution in the Message folder in the chapter
directory contains an example that is very similar to
the one shown for Transport security.

 The only differences are the Message setting for the security
mode, as shown above, and the corresponding change also in
the client configuration file.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

283

Other Security Modes

 Mixed

 This setting makes WCF use Transport security for
confidentiality, integrity and authentication, and also uses
Message security to allow sending credentials.

 With this option, we can take advantage of the performance
of Transport security and the configuration flexibility of
Message security.

 The downside is that we are limited by the Transport security
constraints, such as only ensuring security from a point-to-
point perspective.

 Both

 With this mode, both Transport and Message security are
used.

 Using this option will result in processing overhead, since
security features will be enabled on both the transport and
application layers.

 None

 With this setting, all security features from WCF are turned
off.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

284

Certificates

 In order to explore other security scenarios in WCF,
we will need to use certificates.

 For the purposes of this course, we will create and
install test certificates.

 In a real world scenario, normally the certificates are
purchased from a certificate authority such as VeriSign.

 The idea behind the use of certificates for service and
client communication works as follows:

 Assume that there is a Company A which hosts a service and
a Company B which has a client application that consumes
that service.

 Company A purchases a certificate and installs it on the
machine that runs the service. Then, Company A sends an
exported version of that certificate to Company B, which in
turn installs that certificate as “trusted” on the machine that
runs the client.

 Similarly, Company B purchases a certificate and installs it
on the machine that runs the client. Then, Company B sends
an exported version of that certificate to Company A, which
in turn installs that certificate as “trusted” on the machine
that runs the service.

 This approach is often called “peer trust”.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

285

Certificate Demo

 Let’s illustrate how to generate test certificates and
use them in a sample WCF application.

 For the sake of simplicity, we will do this demo considering
that both service and client are running on the same
computer. However, the process will be very similar in case
you want to run it with service and client on separate
computers.

 Note that you must complete at least Steps 1 through 11 in
order to run the supplied solutions for both the Certificate
example and also the following UserNameCredential
example, as well as the lab.

1. Open a Visual Studio 2017 command prompt, running as
Administrator, and navigate to the folder Demos\Certificate in
the course directory.

2. Run the batch file Cert.bat.

 This batch file creates test certificates for the service
(OIWCFService.cer) and for the client (OIWCFClient.cer).

 Note that the test certificate must be generated on the
computer that will run the application that will use the
certificate to represent itself.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

286

Managing Certificates

3. In order to manage the certificates mentioned on this chapter,
you will need to create a MSC Console with the Certificates
snap-in. You can create this by following these steps:

 Using the Visual Studio 2017 command prompt that you
have running, type “mmc” and click OK.

 On the empty MMC Console that opens, click File, and then
Add/Remove Snap-in…

 Select “Certificates”, then click Add, select the option
“Computer account”, and click Next. Leave selected: snap-
in will manage the local computer, and click Finish and OK.

 You can save this MMC Console for your future use. Go to
File, then Save As…, and create a msc file on your desktop.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

287

Certificate Demo (Cont’d)

4. Verify that the certificates are installed on the computer by
opening the Certificates snap-in and navigating to
Personal\Certificates.

 Both OIWCFService and OIWCFClient are listed.

 Both the service and the client have their certificates in store
to be used when communicating with each other.

 However, we still need to configure the service certificate to
be trusted by the client application, and the client certificate
to be trusted by the service.

5. Right-click the OIWCFService certificate, point to All Tasks,
click Export…, and then click Next.

6. Say no to the option of exporting the certificate with the private
key and click Next.

7. Keep the default format for the certificate (DER encoded binary
X.509) and click Next.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

288

Certificate Demo (Cont’d)

8. Choose a file name and location for the exported version of the
certificate, click Next and then click Finish. Repeat steps 5 to 8
for the OIWCFClient certificate.

9. On the Certificates Snap-in, right-click the Trusted People
folder, point to All Tasks, click Import…, and then click Next.

10. Put in the path to the exported version of the OIWCFService
certificate you saved at step 8 and click Next.

11. The next screen shows that the certificate will be saved at the
Trusted People store, which is what we want, so click Next, and
then Finish. Repeat steps 9 to 11 for the exported version of the
OIWCFClient certificate.

 Now that we have the necessary certificates properly
set up, let’s work on the host and client configuration.

12. Open the solution in the Demos\Certificate folder and run
both the host and the client to make sure they are working
properly.

 On the client, you should see a greeting message when you
type your name and click the Greet button.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

289

Certificate Demo (Cont’d)

13. Open the App.config file on the Host project. You will
notice that it is set to use Message security, with Windows
credential type. Change it to use Certificate credential type
instead.

...
<binding name="Secured">
 <security mode="Message">
 <message clientCredentialType="Certificate"/>
 </security>
</binding>

14. Build and run the host under the debugger. You will hit an

exception, which is pretty much unclear.

 It is very common in WCF that the exceptions are wrapped in
multiple layers, so commonly you can find out more details
on what happened behind the scenes by digging into the
exception’s InnerException property.

 You can do that by clicking the View Detail… link in Visual
Studio when the exception is displayed to see the real issue.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

290

Exception Details

 The real issue is that the certificate to be used by the service
was not provided.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

291

Certificate Demo (Cont’d)

15. Let’s add the configuration that solves this issue by
specifying a service certificate in the App.config file in the
Host project.

...
<behavior name="serviceBehavior">
 <serviceMetadata httpGetEnabled="true" />
 <serviceCredentials>
 <clientCertificate>
 <authentication
 certificateValidationMode="PeerTrust"
 revocationMode="NoCheck"/>
 </clientCertificate>
 <serviceCertificate findValue="OIWCFService"
 storeLocation="LocalMachine"
 storeName="My"
 x509FindType="FindBySubjectName"/>
 </serviceCredentials>
</behavior>

 The clientCertificate node is specifying how the certificates
sent by clients should be validated, meaning basically that the
service will look for the client’s certificate in the Trusted
People store to see whether it should be accepted or not.

 The serviceCertificate element specifies search parameters
that indicate where to find the certificate to be used by the
service on the local store.

16. Build and run the host. Now the service should be started
normally, using the proper certificate.

17. You can now stop the service. You are now at Step 1. A copy
of this solution at this point is saved in Certificate\Step1 in the
project directory. (At this step only the host is working.)

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

292

Client Certificate Configuration

 Now let’s add the certificate configuration to the
client.

1. Open the app.config file on the HelloWin project. You will
notice that it is set to use Message security, with Windows
credential type. Change it to use Certificate credential type
instead.

...
<binding name="Secured" closeTimeout="00:01:00"
 openTimeout="00:01:00" ...
 ...
 <security mode="Message">
 <message clientCredentialType="Certificate"
 algorithmSuite="Default" />
 </security>
</binding>

2. As we learned when configuring the server, we also need to

“tell” the client how to find its certificate in the Local Computer
store. You can do that by adding a behavior configuration to the
config file, which should include the clientCredentials
configuration element.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

293

Client Certificate Configuration

(Cont’d)

<system.serviceModel>
 ...
 <behaviors>
 <endpointBehaviors>
 <behavior name="clientBehavior">
 <clientCredentials>
 <clientCertificate
 findValue="OIWCFClient"
 storeLocation="LocalMachine"
 storeName="My"
 x509FindType="FindBySubjectName"/>
 <serviceCertificate>
 <authentication
 certificateValidationMode=
 "PeerTrust"
 revocationMode="NoCheck"/>
 </serviceCertificate>
 </clientCredentials>
 </behavior>
 </endpointBehaviors>
 </behaviors>
 </system.serviceModel>

 Note that the roles of clientCertificate and serviceCertificate
elements are inverted when compared to the configuration on
the service side. Here, the clientCertificate element is used to
find the client certificate and the serviceCertificate is used to
configure how the certificate sent by the service should be
validated.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

294

Client Certificate Configuration

(Cont’d)

3. Specify the behaviorConfiguration property on the service
endpoint to point to the configuration created on the previous
step.

<endpoint address="..." name="netTcp"
 binding="netTcpBinding"
 contract="ServiceReference1.IHello"
 bindingConfiguration="netTcp"
 behaviorConfiguration="clientBehavior">
</endpoint>

4. Build and run the host and the client, type in a name and click

the Greet button. You will hit an exception saying that the
identity check failed for the outgoing message. That can be
fixed by specifying a DNS identity for the service endpoint on
the client side.

<endpoint address=...
 <identity>
 <dns value="OIWCFService"/>
 </identity>
</endpoint>

5. Build and run the host and the client, type in a name and click

the Greet button. Now your WCF solution secured using
certificates works perfectly! You are now at Step 2.

 A copy of this solution is saved in Certificate\Step2
folder in the chapter directory.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

295

Sending Credentials

 In some scenarios, you may be interested in passing
credentials from the client to the service.

 For example, you may want to implement authorization by
giving some clients permission to execute a given operation,
but not to others.

 Here are some alternatives to achieve that:

 Windows credentials: the client can pass a windows
credential to the service (by default, the one that is running
the client’s process).

 ASP.NET Role Provider: you can use the role provider
shipped with .NET to authorize users into the service
methods.

 Custom user name validation: you can implement a custom
class that will check the username and password from the
client at the service.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

296

Username Credentials

 Let’s see a simple example that passes a username
and a password to a WCF service.

 Open the solution in the UserNameCredential folder in the
chapter directory.

 Build and run the host and the client. Type a message
on the client and click on the Greet button.

 On the server console a message is displayed indicating that
the client was able to call the service, which also included the
username.

Press ENTER to terminate the service host
Method SayHello called by user 'oi'

 Now let’s see how this was implemented.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

297

Username Example

 Open App.config on the Host project. On the binding
configuration, the client credential type is set to
UserName.

<binding name="Secured">
 <security mode="Message">
 <message clientCredentialType="UserName"/>
 </security>
</binding>

 When using UserName as the client credential type,
WCF still requires that a certificate is provided in the
communication between client and server.

 The reason for that is that a username and password pair
allows implementing authorization, but not authentication.

 Now let’s take a look at the serviceCredentials
element in the service behavior configuration.

<serviceCredentials>
 <userNameAuthentication
 customUserNamePasswordValidatorType=
 "Host.CustomUserNameValidator, Host"
 userNamePasswordValidationMode="Custom"/>
 <clientCertificate>
 <authentication
 certificateValidationMode="PeerTrust"
 revocationMode="NoCheck"/>
 </clientCertificate>
 <serviceCertificate findValue="OIWCFService"
 storeLocation="LocalMachine" storeName="My"
 x509FindType="FindBySubjectName"/>
</serviceCredentials>

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

298

Username Example (Cont’d)

 The usernameAuthentication element informs that a
custom class was provided to validate credentials.

 Let’s take a look at this class by opening
CustomUserNameValidator.cs in the Host project.

public class CustomUserNameValidator :
 UserNamePasswordValidator
{
 public override void Validate(
 string userName, string password)
 {
 if (null == userName || null == password)
 {
 throw new ArgumentNullException();
 }

 if (!(userName == "oi" &&
 password == "io"))
 {
 throw new SecurityTokenException(
 "Unknown username or incorrect password");
 }
 }
}

 For the sake of simplicity, this example just validates
a hardcoded username and password.

 You could extend this approach to use potentially any custom
credentials provider.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

299

Username Example (Cont’d)

 Providing credentials on the client side is very simple.

 Open Form1.cs on the HelloWin project.

 Note that the client credentials are provided
programmatically when the service proxy is created.

HelloClient proxy = new HelloClient();
proxy.ClientCredentials.UserName.UserName = "oi";
proxy.ClientCredentials.UserName.Password = "io";
txtResponse.Text = proxy.SayHello(txtName.Text);

 Finally, if you want to get information about the
identity of the client at the service side, you can use
the ServiceSecurityContext class.

 See Hello.cs in the HelloLib WCF library for an example.

Console.WriteLine(String.Format(
 "Method SayHello called by user '{0}'",
ServiceSecurityContext.Current.PrimaryIdentity.Name
));

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

300

Lab 8

Custom User Credentials and Authorization

In this lab you will improve an unsecured contact manager
application adding security configuration, certificates support and a
custom username validation mechanism. You will also implement
authorization by making sure only a specific user can access a
given method.

Detailed instructions are contained in the Lab 8 write-up at the end
of the chapter.

Suggested time: 90 minutes

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

301

Summary

 Securing services is about securing the
communication between different software entities.

 Implementing service security involves aspects such
as confidentiality, integrity, authentication and
authorization.

 Transport and Message security modes are available
to be used in WCF services depending on the
application scenario.

 Most of the security configuration of a WCF service
can be done in the config file.

 Using certificates to implement security allows us to
also implement other security mechanisms, such as
username credentials.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

302

Lab 8

Custom User Credentials and Authorization

Introduction

In this lab you will improve an unsecured contact manager application adding security
configuration, certificates support and a custom username validation mechanism. You
will also implement authorization by making sure only a specific user can access a given
method.

Suggested Time: 90 minutes

Root Directory: OIC\WcfCs

Directories: Labs\Lab8\ContactMgr (do your work here)
 Chap08\ContactMgr\Step0 (starter code backup)
 Chap08\ContactMgr\Step1 (answer to part 1)
 Chap08\ContactMgr\Step2 (answer to part 2)
 Chap08\ContactMgr\Step3 (answer to part 3)

Part 1: Modify Security Configuration

1. Open the starter solution. There are three projects: a service library, a host, and a

Windows client program. Build the solution and start the host. Then start the
Windows client. You will be able to Add, Remove and Modify contacts. A user
interface is provided for credentials, but there is no code yet.

2. On the service library project, open the file ContactManager.cs. Notice the
implementation of the service methods for adding, removing and modifying a contact.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

303

3. Since we want to support UserName credentials in this application, let’s configure it
to work with certificates first. Open the file App.config in the Host project.

4. Add a binding configuration section indicating that the Message security mode will
be used and that the client credential type will be Certificate. Remember to give a
name to this binding configuration so you can refer it in the endpoint in the next step.

 ...
 </services>
 <bindings>
 <netTcpBinding>
 <binding name="Secured">
 <security mode="Message">
 <message clientCredentialType="Certificate"/>
 </security>
 </binding>
 </netTcpBinding>
 </bindings>
</system.serviceModel>

5. On the endpoint definition, specify the name of the binding configuration you just

created.

<endpoint address="Hello" binding="netTcpBinding"
 name="netTcp" contract="ContactLib.IContactManager"
 bindingConfiguration="Secured"/>

6. Now, add configuration to a reference to the OIWCFService certificate, which was

created previously in this chapter. You should also add configuration for the client
certificate to be validated using the PeerTrust mode, and the revocation mode should
be set to NoCheck.

...
 <serviceMetadata httpGetEnabled="true"/>
 <serviceCredentials>
 <clientCertificate>
 <authentication certificateValidationMode="PeerTrust"
 revocationMode="NoCheck"/>
 </clientCertificate>
 <serviceCertificate findValue="OIWCFService"
 storeLocation="LocalMachine" storeName="My"
 x509FindType="FindBySubjectName"/>
 </serviceCredentials>
 </behavior>
</serviceBehaviors>

7. Run the host project to ensure the host can be started with no configuration errors.

8. Now let’s configure security for the client to support certificates. Open the file
app.config on the ContactWin project.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

304

9. On the binding configuration section, modify the security mode to Message. Remove
the transport security node, since we are using message security for this application,
and then change the client credential type to Certificate on the message node.

<bindings>
 <netTcpBinding>
 <binding ...
 ...
 <security mode="Message">
 <message clientCredentialType="Certificate" />
 </security>
 </binding>
 </netTcpBinding>
</bindings>

10. Add a behavior configuration section indicating that client credential used will be a

certificate. You should also add configuration for the service certificate to be
validated using the PeerTrust mode, and the revocation mode should be set to
NoCheck. Remember to give a name to this behavior configuration so you can refer
it in the endpoint in the next step.

 ...
 <behaviors>
 <endpointBehaviors>
 <behavior name="Secured">
 <clientCredentials>
 <clientCertificate findValue="OIWCFClient"
 storeLocation="LocalMachine" storeName="My"
 x509FindType="FindBySubjectName"/>
 <serviceCertificate>
 <authentication certificateValidationMode="PeerTrust"
 revocationMode="NoCheck"/>
 </serviceCertificate>
 </clientCredentials>
 </behavior>
 </endpointBehaviors>
 </behaviors>
</system.serviceModel>

11. Specify the name of the newly created behavior configuration within the endpoint

definition.

<endpoint address="net.tcp://localhost:8001/Hello"
 binding="netTcpBinding" bindingConfiguration="netTcp"
 contract="ServiceReference1.IContactManager"
 name="netTcp" behaviorConfiguration="Secured">

12. To complete the certificate configuration on the client, you must set up the DNS

identity of the service so that the service certificate can be properly validated. In order
to do this, add a dns configuration element to the identity configuration of the
endpoint with the value OIWCFService, since this is assumed to be the DNS name
used by the service that owns the OIWCFService certificate. You can also remove the
userPrincipalName configuration which was added by default by WCF when

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

305

creating that configuration file, which won’t be needed in our scenario. Here is how
the endpoint configuration should look like after your changes:

<endpoint address="net.tcp://localhost:8001/Hello"
 binding="netTcpBinding" bindingConfiguration="netTcp"
 contract="ServiceReference1.IContactManager"
 name="netTcp" behaviorConfiguration="Secured">
 <identity>
 <dns value="OIWCFService"/>
 </identity>
</endpoint>

13. Run the host and then the client. Try to do any operation (Add, Remove or Modify) to

ensure the security configuration you’ve just done didn’t break the communication
between the service and the client. You are now at Step 1.

Part 2: Implement Username Credentials Support

1. In this part, we will slightly modify the configuration we just implemented to use

Username credentials, which requires that the client and the service are properly set
up with certificates first. In this lab we won’t use any existing credentials provider
like ASP.NET Role Provider or Windows Authentication. We will implement a
simple custom username authentication class just for illustration purposes, which you
can easily extend to use other custom authentication providers. Let’s start by adding a
new class file to the host project, by right-clicking the project and selecting Add, then
New Item… and then the Class template. Provide CustomUserNameValidator.cs as
the file name and click OK.

2. We can implement a custom username validator in WCF by extending the
UserNamePasswordValidator class from the System.IdentityModel.Selectors
namespace. Before using this namespace, you must add a reference to
System.IdentityModel on the Host project.

3. Now, implement the CustomUserNameValidator class by inheriting the
UserNamePasswordValidator class and overriding the Validate method, which
takes a username and a password as parameters. Note that these credentials will be
passed by the client and will reach this code before reaching the service methods, so
this is the place to validate and throw the proper exceptions in case the credentials are
incorrect. For the sake of simplicity, let’s just implement the verification of two
acceptable credentials, one for a plain user and another for a manager.

class CustomUserNameValidator : UserNamePasswordValidator
{
 public override void Validate(string userName, string password)
 {
 if (userName == null || password == null)
 {
 throw new ArgumentNullException();

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

306

 }

 if (!(userName == "user" && password == "user") &&
 !(userName == "manager" && password == "manager"))
 {
 throw new SecurityTokenException(
 "Unknown username or incorrect password");
 }
 }
}

4. Import the System.IdentityModel.Selectors and the System.IdentityModel.Tokens

namespaces, since we are using the classes UserNamePasswordValidator and
SecurityTokenException respectively in the code.

5. Open the App.config file in the Host project. Configure the host to use username
authentication by changing the clientCredentialType property in the message
configuration for the binding.

<binding name="Secured">
 <security mode="Message">
 <message clientCredentialType="UserName"/>
 </security>
</binding>

6. On the behavior configuration, add a userNameAuthentication element to the

serviceCredentials node, specifying the validation mode as Custom and the class that
will be responsible for the validation.

<serviceCredentials>
 ...
 <userNameAuthentication
 customUserNamePasswordValidatorType =
 "Host.CustomUserNameValidator, Host"
 userNamePasswordValidationMode="Custom"/>
</serviceCredentials>

7. Let’s now add some logging to the service to let us know the name of the user who is

calling the service operations. On the ContactManager class in the service library,
add a LogCall method which takes a method name as a string parameter.

private void LogCall(string methodName)
{
 string currentUserName =
 ServiceSecurityContext.Current.PrimaryIdentity.Name;
 Console.WriteLine(String.Format("Method {0} called by user {1}",
 methodName, currentUserName));
}

8. Inside the method AddContact, call LogCall passing the method name. Do the same

for RemoveContact, ModifyContact and GetContacts.

public void AddContact(Contact cont)

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

307

{
 LogCall("AddContact");
 contacts.Add(cont);
}

9. Build and run the host application, and then run the client. You will hit a security-

related exception, since now the service is expecting username credentials to be
passed from the client.

10. Let’s now configure the client to work with username credentials. Open app.config
on the client project and, on the binding configuration, change the message
clientCredentialType property to UserName.

<security mode="Message">
 <message clientCredentialType="UserName" />
</security>

11. In order to provide username credentials on the client, you need to set the proxy’s

ClientCredentials.UserName property to appropriate values. For now, just to test
the connectivity with the service, set the username and password properties to the
hard coded values we used in the proxy on the Form1_Load method in the Form1.cs
file. Note that this must be done before the first call to a service operation.

private void Form1_Load(object sender, EventArgs e)
{
 proxy = new ContactManagerClient();
 proxy.ClientCredentials.UserName.UserName = "user";
 proxy.ClientCredentials.UserName.Password = "user";
 ShowContacts();
}

12. Build and run host and client. Notice that now the client is back working again with

the service, since client credentials are being provided. Also, on the host console
window, you will see a log message saying that the GetContacts method was called
by the user “user”. You are now at Step 2.

Part 3: Implement Authorization

In this part, we will use the modified client interface to allow providing credentials on the
fly. We will implement a simple authorization step on the service to require that a
specific user credential is provided to execute a given operation. In Form1.cs in the client
project there are two text boxes to allow the user to enter a username and a password, and
a Set button to validate the credentials. The PasswordChar property of the password text
box is set to *, to avoid displaying the text while entering the value.

1. The application at this point is creating the proxy and loading contacts when the form
loads. We will have to change this behavior, since we don’t know yet which
credentials to use when the form loads. Our purpose is to create the proxy and load

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

308

the contacts only when the Set button is clicked. Double-click the Set button to create
a click event handler.

2. Remove the call to ShowContacts() from the Form1_Load() method and move the
code that instantiates the proxy to a new method called SetupProxy(), which takes a
username and a password as parameters. Also, proxy should be initialized to null.

ContactManagerClient proxy = null;

private void Form1_Load(object sender, EventArgs e)
{
}

private void SetupProxy(string userName, string password)
{
 proxy = new ContactManagerClient();
 proxy.ClientCredentials.UserName.UserName = userName;
 proxy.ClientCredentials.UserName.Password = password;
}

3. On the btnSetCredentials_Click() method, check if the proxy is created and, in case

it isn’t, call the SetupProxy() method passing the user-provided credentials, and then
call the ShowContacts() method.

private void btnSetCredentials_Click(object sender, EventArgs e)
{
 if (proxy == null)
 {
 SetupProxy(txtUser.Text, txtPassword.Text);
 }

 ShowContacts();
}

4. Build and run host and client. Type “user” as username and password, and click the

Set button. You should see the contacts listed appropriately, and a log for the call to
GetContacts() in the service console window. Now, close the host application only,
and try to click the Set button. You will hit an exception. Let’s handle that exception
in a generic way. Wrap the call to ShowContacts() in a try/catch block and display a
message to the user. You should also set the proxy to null when the exception is
caught, since you won’t want to risk using the proxy in an invalid state later. And
finally, show a message to the client after calling ShowContacts(), to make him
aware that the call to the service was done successfully after setting the credentials.

try
{
 ShowContacts();
 MessageBox.Show("Authentication successfull");
}
catch (Exception ex)
{
 proxy = null;
 MessageBox.Show(

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

309

 "A problem occurred when communicating with the service: " +
 ex.Message);
}

5. Build and run client only. Enter valid credentials and click the Set button. You should

see a proper message being displayed, indicating that the service is down. Now bring
the service up and click the button again, to ensure the authentication happens
successfully. Provide now different (invalid) credentials and click the Set button, and
you will notice a weird behavior: the “authentication successful” message will come
up! Actually, this is an interface issue, since the user that shows up on the service
console log is “user”. That leads us to understand that our interface needs to “detect”
when the credentials changed, so we can setup the proxy with the new credential
information. You can do so by comparing the credentials on the text boxes with the
ones stored on the proxy. Do this in the beginning of the btnSetCredentials_Click()
method.

private void btnSetCredentials_Click(object sender, EventArgs e)
{
 // If credentials changed, re-create proxy
 if (proxy != null &&
 (proxy.ClientCredentials.UserName.UserName != txtUser.Text ||
 proxy.ClientCredentials.UserName.Password != txtPassword.Text))
 {
 proxy.Close();
 proxy = null;
 }

 if (proxy == null)
 {
 SetupProxy(txtUser.Text, txtPassword.Text);
 }
 ...

6. Try to reproduce the issue again by setting the credentials as “user” and then

“manager”, and you’ll see that the client is now able to detect that the credentials
changed when you click the Set button. If you enter invalid credentials, you will hit
an exception on the service, which you can ignore by pressing F5 and letting the
service run, and you will then get a not so friendly message on the client about a
security fault. You can improve the user experience by catching explicitly that
exception type, which is MessageSecurityException, from the
System.ServiceModel.Security namespace, and show a friendlier message to the
user.

try
{
 ShowContacts();
 MessageBox.Show("Authentication successfull");
}
catch (System.ServiceModel.Security.MessageSecurityException)
{
 proxy = null;
 MessageBox.Show("Invalid username or password");

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

310

}
catch (Exception ex)
{
 proxy = null;
 MessageBox.Show(
 "A problem occurred when communicating with the service: " +
 ex.Message);
}

7. Build and run host and client, and verify that an appropriate message will be

displayed when you enter invalid credentials. You will still hit the exception on the
service, which is an expected behavior.

8. Now let’s add a simple validation on the btnAdd_Click() method to verify if the
proxy was setup before the user tried to add a new contact. To achieve this, just verify
if the proxy is null in the beginning of the method, and show a message to the user in
case it needs to be setup. Do the same for the methods btnRemove_Click() and
btnModify_Click().

private void btnAdd_Click(object sender, EventArgs e)
{
 if (proxy == null)
 {
 MessageBox.Show("Please set your credentials first.");
 return;
 }
 ...

9. Build and run host and client and verify that you cannot use the Add, Remove and

Modify buttons before properly setting up credentials.

10. Finally, let’s implement an example of authorization on this application. Let’s assume
that only the user “manager” can delete contacts. To achieve that, you must add
validation to the RemoveContact method of the ContactManager class in the
service library.

LogCall("RemoveContact");

if (ServiceSecurityContext.Current.PrimaryIdentity.Name != "manager")
{
 throw new ApplicationException("Insufficient privileges");
}

contacts.Remove(cont);

11. Build and run host and client, and try to remove a contact using the “user” credential.

You will hit an exception on the service, which you can ignore and press F5. Then,
you will hit an unhandled exception on the client as well due to the exception raised
on the service for insufficient privileges. Let’s handle that exception so we can
display a friendlier message to the user. Wrap the code from the btnRemove_Click()
method in the Form1.cs class on the client in a try/catch block, and display the
exception message to the user in a message box.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

311

try
{
 Contact cont = new Contact();
 cont.FirstName = txtFirst.Text;
 cont.LastName = txtLast.Text;
 proxy.RemoveContact(cont);
 ShowContacts();
}
catch (Exception ex)
{
 MessageBox.Show(ex.Message);
}

12. Build and run host and client, and try to remove a contact using the “user” credential

again. When hitting the exception on the service, press F5 and let it run. You will see
a message box on the client side with a not so friendly message. This happened
because the exception raised on the service side didn’t have its details propagated to
the client. You have two options to get around this situation. The first would be to
handle the specific exception type and show a hard coded message to the user, and the
other would be to enable exception details to be sent from the service to the client.
For our purposes in this lab, let’s do the latter. Open App.config in the host project
and add the serviceDebug tag to the behavior configuration, configuring it to include
exception details in faults.

<behavior name="serviceBehavior">
 ...
 <serviceDebug includeExceptionDetailInFaults="true"/>
</behavior>

13. Build and run host and client, and verify that now a more appropriate message is

displayed in the previous use case. However, there is an issue: after the message is
displayed, we can’t use the proxy anymore, since it is on the Faulted state. You will
see that if you try to add or modify a contact, since you’ll hit an exception on the
client. To solve this problem, just call the SetupProxy() method again on the catch
block on the btnRemove_Click() method, to make sure the proxy is valid even if a
fault happens due to insufficient privileges.

try
{
 Contact cont = new Contact();
 cont.FirstName = txtFirst.Text;
 cont.LastName = txtLast.Text;
 proxy.RemoveContact(cont);
 ShowContacts();
}
catch (Exception ex)
{
 MessageBox.Show(ex.Message);
 SetupProxy(txtUser.Text, txtPassword.Text);
}

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

WcfCs Chapter 8

Rev. 4.8 Copyright © 2018 Object Innovations Enterprises, LLC
 All Rights Reserved

312

14. Build and run host and client, and verify that the application is working correctly after
you try to remove a contact with insufficient privileges. Try to modify a contact and
then change the credential to “manager”. You will notice an issue: after you change
the credentials, the data in the contact you modified was reset to the original value.
This happened because the service is running using the default instance context mode,
which is per session. Let’s change that so that the service runs in a single instance.
Open the ContactManager.cs file on the service library and change the
InstanceContextMode property to Single.

[ServiceBehavior(InstanceContextMode = InstanceContextMode.Single)]
public class ContactManager : IContactManager
{
 ...

15. Build and run host and client, and verify that the application is working correctly.

You are now at Step 3.

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

7400 E. Orchard Road, Suite 1450 N
Greenwood Village, Colorado 80111

Ph: 303-302-5280
www.ITCourseware.com

9-08-00397-000-05-16-18

Unauthorized reproduction or distribution is prohibitied

EVALUATION COPY

